Skip to main content

Phytoplankton Dynamics in the Aegean Sea

  • Chapter
  • First Online:
The Handbook of Environmental Chemistry

Abstract

The present review constitutes an updated and integrated assessment of phytoplankton spatiotemporal dynamics in the Aegean Sea, based on data compiled from numerous oceanographic surveys of the Hellenic Centre for Marine Research (HCMR), conducted over the last 34 years (1987–2020). Phytoplankton properties, namely chlorophyll a (Chl a) concentrations and primary production (PP) rates, measured as total and as size fractions (0.2–2.0, 2.0–5.0, and >5 μm) in the epipelagic waters (0–200 m) of the Aegean Sea are examined on a seasonal basis within three selected geographic divisions: (a) the North Aegean Sea sub-area (NAS), (b) the Northeast Aegean Sea sub-area (NEAS), and (c) the South Aegean Sea sub-area (SAS). According to the present review, during the productive period (winter-spring) Chl a concentrations and PP rates peak in all sub-areas of the Aegean Sea, with enhanced values reported in NEAS while decreasing toward NAS and SAS. In NEAS-NAS Chl a and PP form prominent maxima within the surface layers resulting from the interplay between the inflow of the nutrient-rich modified Black Sea Waters (BSW) that form a distinct surface layer down to 20–50 m depth in the North Aegean, with winter mixing, introducing nutrients into the euphotic zone from deeper layers. In SAS, vertical profiles appear relatively homogenous down to 100 m, as a result of a well-mixed water column replenished with nutrients from the deeper layers following winter overturn, and of a more extended euphotic zone due to highly transparent waters. During the stratified period (summer-autumn), Chl a and PP levels drop and Chl a vertical profiles converge, with Deep Chlorophyll Maxima (DCM) clearly formed in all the Aegean sub-areas, deepening progressively from NEAS (50–56 m) toward NAS (75–77 m) and SAS (81–92 m). PP profiles, however, follow different vertical patterns, with higher PP values persisting in surface layers (0–50 m) in NEAS-NAS, always related to the BSW inflow, and relatively homogenous PP profiles maintained in SAS, down to 75 m. The established gradient of increasing oligotrophy and/or decreasing productivity from north to south is confirmed, yielding mean annual PP values of 0.51 ± 0.2, 0.33 ± 0.22, and 0.22 ± 0.09 mg C m−3 h−1 for NEAS, NAS, and SAS, respectively, while for Chl a this gradient is relaxed when considering annual means, and becomes evident only during the productive period (mean annual: 0.19 ± 0.09, 0.16 ± 0.07, 0.16 ± 0.04 mg m−3 and productive period: 0.26 ± 0.00, 0.22 ± 0.04, and 0.19 ± 0.03 mg m−3, in NEAS, NAS, and SAS, respectively). The above-mentioned N-S gradient is maintained when water column integrated PP rates are considered; however, when water column integrated Chl a values are considered, the contribution of SAS is enhanced, balancing the respective contribution of NEAS and NAS in winter and outcompeting them by ~1.5–2-fold and by ~1.2–1.5-fold, respectively, in all other seasons. This pattern is related to a more extended euphotic zone in SAS and relevant photo-physiological adaptations of phytoplankton resulting in higher Chl a per cell content rather than in situ growth. Concerning the phytoplankton community structure, picoplankton (0.2–2.0 μm) has the highest contribution to both Chl a and PP, followed by larger size fractions, first >5.0 μm and then 2.0–5.0 μm. However, during winter and spring larger cells considered together ([2.0−5.0] + [>5.0 μm]) outcompete picoplankton in the North Aegean in terms of PP (relative contribution 52–60%), whereas in the South Aegean picoplankton dominates year round (>50%) both Chl a and PP rates. The overall spatiotemporal patterns of phytoplankton properties in the Aegean Sea (Chl a and PP rates) reflect the fundamental differences in hydrographic and environmental forcings between the north and the south basins that give rise to consistent N-S oligotrophy/productivity gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Legendre L, Le Fevre J (1995) Microbial food webs and the export of biogenic carbon in oceans. Aquat Microb Ecol 9:69–77. https://doi.org/10.3354/ame009069

    Article  Google Scholar 

  2. Marañón E (2015) Cell size as a key determinant of phytoplankton metabolism and community structure. Annu Rev Mar Sci 7:241–264. https://doi.org/10.1146/annurev-marine-010814-015955

    Article  Google Scholar 

  3. Krom MD, Emeis KC, Van Cappellen P (2010) Why is the Eastern Mediterranean phosphorus limited? Prog Oceanogr 85:236–244. https://doi.org/10.1016/j.pocean.2010.03.003

    Article  Google Scholar 

  4. Van Wambeke F, Christaki U, Giannakourou A, Moutin T, Souvemerzoglou K (2002) Longitudinal and vertical trends of bacterial limitation by phosphorus and carbon in the Mediterranean Sea. Microb Ecol 43:119–133. https://doi.org/10.1007/s00248-001-0038-4

    Article  Google Scholar 

  5. Santinelli C, Sempéré R, Van Wambeke F, Charriere B, Seritti A (2012) Organic carbon dynamics in the Mediterranean Sea: an integrated study. Global Biogeochem Cycles 26:2011GB004151. https://doi.org/10.1029/2011GB004151

    Article  Google Scholar 

  6. Gogou A, Sanchez-Vidal A, Durrieu de Madron X, Stavrakakis S, Calafat AM, Stabholz M, Psarra S, Canals M, Heussner S, Stavrakaki I, Papathanassiou E (2014) Carbon flux to the deep in three open sites of the Southern European Seas (SES). J Mar Syst 129:224–233. https://doi.org/10.1016/j.jmarsys.2013.05.013

    Article  Google Scholar 

  7. Moutin T, Raimbault P (2002) Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise). J Mar Syst 33–34:273–288. https://doi.org/10.1016/S0924-7963(02)00062-3

    Article  Google Scholar 

  8. Turley C, Bianchi M, Christaki U, Conan P, Harris J, Psarra S, Ruddy G, Stutt E, Tselepides A, Van Wambeke F (2000) Relationship between primary producers and bacteria in an oligotrophic sea-the Mediterranean and biogeochemical implications. Mar Ecol Prog Ser 193:11–18. https://doi.org/10.3354/meps193011

    Article  Google Scholar 

  9. Ignatiades L, Gotsis-Skretas O, Pagou K, Krasakopoulou E (2009) Diversification of phytoplankton community structure and related parameters along a large-scale longitudinal east – west transect of the Mediterranean Sea. J Plankton Res 31:411–428. https://doi.org/10.1093/plankt/fbn124

    Article  Google Scholar 

  10. Krom MD, Groom S, Zohary T (2003) The Eastern Mediterranean. In: Black K, Shimmield GB (eds) Biogeochemistry of marine systems. Blackwell Publishing, pp 91–126

    Google Scholar 

  11. Moutin T, Van Wambeke F, Prieur L (2012) Introduction to the biogeochemistry from the oligotrophic to the ultraoligotrophic Mediterranean (BOUM) experiment. Biogeosciences 9:3817–3825. https://doi.org/10.5194/bg-9-3817-2012

    Article  Google Scholar 

  12. Longhurst AR (1998) Ecological geography of the sea. Academic Press

    Google Scholar 

  13. D’Ortenzio F, Ribera d’Alcalà M (2009) On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6:139–148. https://doi.org/10.5194/bgd-5-2959-2008

    Article  Google Scholar 

  14. Lavigne H, D’Ortenzio F, Ribera D’Alcalà M, Claustre H, Sauzède R, Gacic M (2015) On the vertical distribution of the chlorophyll a concentration in the Mediterranean Sea: a basin-scale and seasonal approach. Biogeosciences 12:5021–5039. https://doi.org/10.5194/bg-12-5021-2015

    Article  Google Scholar 

  15. Siokou-Frangou I, Christaki U, Mazzocchi MG, Montresor M, Ribera D’Alcala M, Vaque D, Zingone A (2010) Plankton in the open Mediterranean Sea: a review. Biogeosciences 7:1543–1586. https://doi.org/10.5194/bg-7-1543-2010

    Article  Google Scholar 

  16. Barbieux M, Uitz J, Bricaud A, Organelli E, Poteau A, Schmechtig C, Gentili B, Obolensky G, Leymarie E, Penkerc’h C, D’Ortenzio F, Claustre H (2018) Assessing the variability in the relationship between the particulate backscattering coefficient and the chlorophyll a concentration from a global biogeochemical-argo database. J Geophys Res Ocean 123:1229–1250. https://doi.org/10.1002/2017JC013030

    Article  Google Scholar 

  17. Ediger D, Tuǧrul S, Yilmaz A (2005) Vertical profiles of particulate organic matter and its relationship with chlorophyll-a in the upper layer of the NE Mediterranean Sea. J Mar Syst 55:311–326. https://doi.org/10.1016/j.jmarsys.2004.09.003

    Article  Google Scholar 

  18. Lagaria A, Mandalakis M, Mara P, Frangoulis C, Karatsolis B-T, Pitta P, Triantaphyllou M, Tsiola A, Psarra S (2017) Phytoplankton variability and community structure in relation to hydrographic features in the NE Aegean frontal area (NE Mediterranean Sea). Cont Shelf Res 149:124–137. https://doi.org/10.1016/j.csr.2016.07.014

    Article  Google Scholar 

  19. Napolitano E, Oguz T, Malanotte-Rizzoli P, Yilmaz A, Sansone E (2000) Simulations of biological production in the Rhodes and Ionian basins of the Eastern Mediterranean. J Mar Syst 24:277–298. https://doi.org/10.1016/S0924-7963(99)00090-1

    Article  Google Scholar 

  20. Zervakis V, Georgopoulos D (2002) Hydrology and circulation in the North Aegean (Eastern Mediterranean) throughout 1997 and 1998. Mediterr Mar Sci 3:5–19. https://doi.org/10.12681/mms.254

    Article  Google Scholar 

  21. Oğuz T (2015) Interaction of the Aegean Sea with the Turkish straits system in terms of flow and water mass characteristics. In: Katağan T, Tokaç A, Beşiktepe Ş, Öztürk B (eds) The Aegean Sea marine biodiversity, fisheries, conservation and governance. Turkish Marine Research Foundation (TUDAV), Istanbul, Turkey. Publication no: 41

    Google Scholar 

  22. Zervakis V, Georgopoulos D, Drakopoulos PG (2000) The role of the North Aegean in triggering the recent Eastern Mediterranean climatic changes. J Geophys Res Ocean 105:26103–26116. https://doi.org/10.1029/2000JC900131

    Article  Google Scholar 

  23. Velaoras D, Zervakis V, Theocharis A (2021) The physical characteristics and dynamics of the Aegean water masses. In: Anagnostou CL, Kostianoy AG, Mariolakos ID, Panayotidis P, Soilemezidou M, Tsaltas G (eds) The Aegean Sea environment: the natural system, handbook of environmental chemistry. Springer, Switzerland

    Google Scholar 

  24. Zervakis V, Theocharis A, Georgopoulos D (2005) Circulation and hydrography of the open seas. In: Papathanasiou E, Zenetos A (eds) SoHelME. State of the Hellenic marine environment. HCMR Publ

    Google Scholar 

  25. Beşiktepe Ş (2015) Physical oceanography of the Aegean Sea: a review. In: Katağan T, Tokaç A, Beşiktepe Ş, Öztürk B (eds) The Aegean Sea marine biodiversity, fisheries, conservation and governance. Turkish Marine Research Foundation (TUDAV), Istanbul, Turkey. Publication no: 41

    Google Scholar 

  26. Henson SA, Beaulieu C, Lampitt R (2016) Observing climate change trends in ocean biogeochemistry: when and where. Glob Chang Biol 22:1561–1571. https://doi.org/10.1111/gcb.13152

    Article  Google Scholar 

  27. Georgopoulos D, Chronis G, Zervakis V, Lykousis V, Poulos S, Iona A (2000) Hydrology and circulation in the Southern Cretan Sea during the CINCS experiment (May 1994–September 1995). Prog Oceanogr 46:89–112. https://doi.org/10.1016/S0079-6611(00)00014-8

    Article  Google Scholar 

  28. Theocharis A, Balopoulos E, Kioroglou S, Kontoyiannis H, Iona A (1999) A synthesis of the circulation and hydrography of the South Aegean Sea and the straits of the Cretan Arc (March 1994–January 1995). Prog Oceanogr 44:469–509. https://doi.org/10.1016/S0079-6611(99)00041-5

    Article  Google Scholar 

  29. Lascaratos A, Roether W, Nittis K, Klein B (1999) Recent changes in deep water formation and spreading in the eastern Mediterranean Sea: a review. Prog Oceanogr 44:5–36. https://doi.org/10.1016/S0079-6611(99)00019-1

    Article  Google Scholar 

  30. Roether W, Klein B, Manca BB, Theocharis A, Kioroglou S (2007) Transient Eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s. Prog Oceanogr 74:540–571. https://doi.org/10.1016/j.pocean.2007.03.001

    Article  Google Scholar 

  31. Velaoras D, Krokos G, Nittis K, Theocharis A (2014) Dense intermediate water outflow from the Cretan Sea: a salinity driven, recurrent phenomenon, connected to thermohaline circulation changes. J Geophys Res Ocean 119:4797–4820. https://doi.org/10.1002/2014JC009937

    Article  Google Scholar 

  32. Lykousis V, Chronis G, Tselepides A, Price NB, Theocharis A, Siokou-Frangou I, Van Wambeke F, Danovaro R, Stavrakakis S, Duineveld G, Georgopoulos D, Ignatiades L, Souvermezoglou A, Voutsinou-Taliadouri F (2002) Major outputs of the recent multidisciplinary biogeochemical researches undertaken in the Aegean Sea. J Mar Syst 33–34:313–334. https://doi.org/10.1016/S0924-7963(02)00064-7

    Article  Google Scholar 

  33. SoHeIME (2005) State of the marine environment. HCMR Publ

    Google Scholar 

  34. SoHelFI (2007) State of Hellenic fisheries. HCMR Publ

    Google Scholar 

  35. Katağan T, Tokaç A, Beşiktepe Ş, Öztürk B (2015) The Aegean Sea marine biodiversity, fisheries, conservation and governance. Turkish Marine Research Foundation (TUDAV), Istanbul, Turkey. Publication no: 41

    Google Scholar 

  36. Tsiaras KP, Petihakis G, Kourafalou VH, Triantafyllou G (2014) Impact of the river nutrient load variability on the North Aegean ecosystem functioning over the last decades. J Sea Res 86:97–109. https://doi.org/10.1016/j.seares.2013.11.007

    Article  Google Scholar 

  37. Pavlidou A, Velaoras D, Karageorgis AP, Rousselaki E, Parinos C, Dähnke K, Möbius J, Meador TB, Psarra S, Frangoulis C, Souvermezoglou E, Androni A, Assimakopoulou G, Chaikalis S, Kanellopoulos TD, Lagaria A, Zachioti P, Gogou A (2020) Seasonal variations of biochemical and optical properties, physical dynamics and N stable isotopic composition in three northeastern Mediterranean basins (Aegean, Cretan and Ionian Seas). Deep Sea Res Part II Top Stud Oceanogr 171:104704. https://doi.org/10.1016/j.dsr2.2019.104704

    Article  Google Scholar 

  38. Kucuksezgin F, Balci A, Kontas A, Altay O (1995) Distribution of nutrients and chlorophyll-a in the Aegean Sea. Oceanol Acta 18:343–352

    Google Scholar 

  39. Tuǧrul S, Beşiktepe ŞT, Salihoǧlu I (2002) Nutrient exchange fluxes between the Aegean and Black Seas through the marmara sea. Mediterr Mar Sci 3:33–42. https://doi.org/10.12681/mms.256

    Article  Google Scholar 

  40. Sempéré R, Panagiotopoulos C, Lafont R, Marroni B, Van Wambeke F (2002) Total organic carbon dynamics in the Aegean Sea. J Mar Syst 33–34:355–364. https://doi.org/10.1016/S0924-7963(02)00066-0

    Article  Google Scholar 

  41. Zeri C, Beşiktepe Ş, Giannakourou A, Krasakopoulou E, Tzortziou M, Tsoliakos D, Pavlidou A, Mousdis G, Pitta E, Scoullos M, Papathanassiou E (2014) Chemical properties and fluorescence of DOM in relation to biodegradation in the interconnected Marmara-North Aegean Seas during August 2008. J Mar Syst 135:124–136. https://doi.org/10.1016/j.jmarsys.2013.11.019

    Article  Google Scholar 

  42. Ignatiades L, Psarra S, Zervakis V, Pagou K, Souvermezoglou E, Assimakopoulou G, Gotsis-Skretas O (2002) Phytoplankton size-based dynamics in the Aegean Sea (Eastern Mediterranean). J Mar Syst 36:11–28. https://doi.org/10.1016/S0924-7963(02)00132-X

    Article  Google Scholar 

  43. Siokou-Frangou I, Bianchi M, Christaki U, Christou E, Giannakourou A, Gotsis O, Ignatiades L, Pagou K, Pitta P, Psarra S, Souvermezoglou E, Van Wambeke F, Zervakis V (2002) Carbon flow in the planktonic food web along a gradient of oligotrophy in the Aegean Sea (Mediterranean Sea). J Mar Syst 33–34:335–353. https://doi.org/10.1016/S0924-7963(02)00065-9

    Article  Google Scholar 

  44. Varkitzi I, Psarra S, Assimakopoulou G, Pavlidou A, Krasakopoulou E, Velaoras D, Papathanassiou E, Pagou K (2020) Phytoplankton dynamics and bloom formation in the oligotrophic Eastern Mediterranean: field studies in the Aegean, Levantine and Ionian seas. Deep Res Part II Top Stud Oceanogr 171:104662. https://doi.org/10.1016/j.dsr2.2019.104662

    Article  Google Scholar 

  45. Ignatiades L (1998) The productive and optical status of the oligotrophic waters of the Southern Aegean Sea (Cretan Sea), Eastern Mediterranean. J Plankton Res 20:985–995. https://doi.org/10.1093/plankt/20.5.985

    Article  Google Scholar 

  46. Gotsis-Skretas O, Pagou K, Moraitou-Apostolopoulou M, Ignatiades L (1999) Seasonal horizontal and vertical variability in primary production and standing stocks of phytoplankton and zooplankton in the Cretan Sea and the straits of the Cretan Arc (March 1994–January 1995). Prog Oceanogr 44:625–649. https://doi.org/10.1016/S0079-6611(99)00048-8

    Article  Google Scholar 

  47. Psarra S, Tselepides A, Ignatiades L (2000) Primary productivity in the oligotrophic Cretan Sea (NE Mediterranean): seasonal and interannual variability. Prog Oceanogr 46:187–204. https://doi.org/10.1016/S0079-6611(00)00018-5

    Article  Google Scholar 

  48. Zervoudaki S, Christou ED, Nielsen TG, Siokou-Frangou I, Assimakopoulou G, Giannakourou A, Maar M, Pagou K, Krasakopoulou E, Christaki U, Moraitou-Apostolopoulou M (2007) The importance of small-sized copepods in a frontal area of the Aegean Sea. J Plankton Res 29:317–338. https://doi.org/10.1093/plankt/fbm018

    Article  Google Scholar 

  49. Isari S, Psarra S, Pitta P, Mara P, Tomprou MO, Ramfos A, Somarakis S, Tselepides A, Koutsikopoulos C, Fragopoulu N (2007) Differential patterns of mesozooplankters’ distribution in relation to physical and biological variables of the Northeastern Aegean Sea (Eastern Mediterranean). Mar Biol 151:1035–1050. https://doi.org/10.1007/s00227-006-0542-7

    Article  Google Scholar 

  50. Frangoulis C, Psarra S, Zervakis V, Meador T, Mara P, Gogou A, Zervoudaki S, Giannakourou A, Pitta P, Lagaria A, Krasakopoulou E, Siokou-Frangou I (2010) Connecting export fluxes to plankton food-web efficiency in the Black Sea waters inflowing into the Mediterranean Sea. J Plankton Res 32:1203–1216. https://doi.org/10.1093/plankt/fbq010

    Article  Google Scholar 

  51. Lagaria A, Psarra S, Gogou A, Tuğrul S, Christaki U (2013) Particulate and dissolved primary production along a pronounced hydrographic and trophic gradient (Turkish Straits System–NE Aegean Sea). J Mar Syst 119–120:1–10. https://doi.org/10.1016/j.jmarsys.2013.02.009

    Article  Google Scholar 

  52. Frangoulis C, Grigoratou M, Zoulias T, Hannides CCS, Pantazi M, Psarra S, Siokou I (2017) Expanding zooplankton standing stock estimation from meso- to metazooplankton: a case study in the N. Aegean Sea (Mediterranean Sea). Cont Shelf Res 149:151–161. https://doi.org/10.1016/j.csr.2016.10.004

    Article  Google Scholar 

  53. Petihakis G, Triantafyllou G, Tsiaras K, Korres G, Pollani A, Hoteit I (2009) Eastern Mediterranean biogeochemical flux model – simulations of the pelagic ecosystem. Ocean Sci 5:29–46. https://doi.org/10.5194/os-5-29-2009

    Article  Google Scholar 

  54. Kalaroni S, Tsiaras K, Petihakis G, Economou-Amilli A, Triantafyllou G (2020) Modelling the Mediterranean pelagic ecosystem using the POSEIDON ecological model. Part I: nutrients and chlorophyll-a dynamics. Deep Sea Res Part II Top Stud Oceanogr 171:104647. https://doi.org/10.1016/j.dsr2.2019.104647

    Article  Google Scholar 

  55. Psarra S, Lagaria A, Pagou P, Assimakopoulou G, Drakopoulos P, Petihakis G, Frangoulis C, Kakagiannis G, Potiris M, Banks A, Karageorgis A (2014) Assessing phytoplankton dynamics in the Aegean Sea: combining field data and remote sensing. In: Giannoudi L, Streftaris N, Papathanassiou E (eds) PERSEUS 2nd scientific workshop – Marrakesh 2014. Book of abstracts. PERSEUS project

    Google Scholar 

  56. Karatsolis B-T, Triantaphyllou MV, Dimiza MD, Malinverno E, Lagaria A, Mara P, Archontikis O, Psarra S (2017) Coccolithophore assemblage response to Black Sea water inflow into the North Aegean Sea (NE Mediterranean). Cont Shelf Res 149:138–150. https://doi.org/10.1016/j.csr.2016.12.005

    Article  Google Scholar 

  57. Escudier R, Clementi E, Omar M, Cipollone A, Pistoia J, Aydogdu A, Drudi M, Grandi A, Lyubartsev V, Lecci R, Cretí S, Masina S, Coppini G, Pinardi N (2020) Mediterranean Sea physical reanalysis (CMEMS MED-currents) (version 1) set. Copernicus Monit Environ Mar Serv. https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1

  58. Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) Fluorometric determination of chlorophyll. ICES J Mar Sci 30:3–15. https://doi.org/10.1093/icesjms/30.1.3

    Article  Google Scholar 

  59. Yentsch CS, Menzel DW (1963) A method for the determination of phytoplanktonic chlorophyll and phaeophytin by fluorescence. Deep Sea Res 10:221–231

    Google Scholar 

  60. Steemann-Nielsen E (1952) The use of radioactive carbon (14C) for measuring organic production in the sea. J Cons Int Explor Mer 18:117–140

    Google Scholar 

  61. Zervoudaki S, Christou ED, Assimakopoulou G, Örek H, Gucu AC, Giannakourou A, Pitta P, Terbiyik T, Yϋcel N, Moutsopoulos T, Pagou K, Psarra S, Özsoy E, Papathanassiou E (2011) Copepod communities, production and grazing in the Turkish straits system and the adjacent Northern Aegean Sea during spring. J Mar Syst 86:45–56. https://doi.org/10.1016/j.jmarsys.2011.02.002

    Article  Google Scholar 

  62. Kokkini Z, Zervakis V, Mamoutos I, Potiris E, Frangoulis C, Kioroglou S, Maderich V, Psarra S (2017) Quantification of the surface mixed-layer lateral transports via the use of a HF radar: application in the North-East Aegean Sea. Cont Shelf Res 149:17–31. https://doi.org/10.1016/j.csr.2017.04.006

    Article  Google Scholar 

  63. Androulidakis YS, Krestenitis YN, Kourafalou VH (2012) Connectivity of North Aegean circulation to the Black Sea water budget. Cont Shelf Res 48:8–26. https://doi.org/10.1016/j.csr.2012.08.019

    Article  Google Scholar 

  64. Souvermezoglou Ε, Krasakopoulou Ε, Pavlidou A (2014) Temporal and spatial variability of nutrients and oxygen in the North Aegean Sea during the last thirty years. Mediterr Mar Sci 15:805–822. https://doi.org/10.12681/mms.1017

    Article  Google Scholar 

  65. Androulidakis YS, Kourafalou VH (2011) Evolution of a buoyant outflow in the presence of complex topography: the Dardanelles plume (North Aegean Sea). J Geophys Res Ocean 116:C04019. https://doi.org/10.1029/2010JC006316

    Article  Google Scholar 

  66. Kioroglou S, Tragou E, Zervakis V, Georgopoulos D, Herut B, Gertman I, Kovacevic V, Özsoy E, Tutsak E (2014) Vertical diffusion processes in the Eastern Mediterranean – Black Sea system. J Mar Syst 135:53–63. https://doi.org/10.1016/j.jmarsys.2013.08.007

    Article  Google Scholar 

  67. Zodiatis G, Alexandri S, Pavlakis P, Jonsson L, Kallos G, Demetropoulos A, Georgiou G, Theodorou A, Balopoulos E (1996) Tentative study of flow patterns in the North Aegean Sea using NOAA-AVHRR images and 2D model simulation. Ann Geophys 14:1221–1231. https://doi.org/10.1007/s00585-996-1221-1

    Article  Google Scholar 

  68. Theocharis A, Georgopoulos D (1993) Dense water formation over the Samothraki and Limnos Plateaux in the North Aegean Sea (Eastern Mediterranean Sea). Cont Shelf Res 13:919–939. https://doi.org/10.1016/0278-4343(93)90017-R

    Article  Google Scholar 

  69. Poulos SE, Drakopoulos PG, Collins MB (1997) Seasonal variability in the sea surface oceanographic conditions in the Aegean Sea (Eastern Mediterranean): an overview. J Mar Syst 13:225–244

    Google Scholar 

  70. Skampa E, Triantaphyllou MV, Dimiza MD, Gogou A, Malinverno E, Stavrakakis S, Parinos C, Panagiotopoulos IP, Tselenti D, Archontikis O, Baumann K-H (2020) Coccolithophore export in three deep-sea sites of the Aegean and Ionian Seas (Eastern Mediterranean): biogeographical patterns and biogenic carbonate fluxes. Deep Sea Res Part II Top Stud Oceanogr 171:104690. https://doi.org/10.1016/j.dsr2.2019.104690

    Article  Google Scholar 

  71. Tselepides A, Zervakis V, Polychronaki T, Danovaro R, Chronis G (2000) Distribution of nutrients and particulate organic matter in relation to the prevailing hydrographic features of the Cretan Sea (NE Mediterrarean). Prog Oceanogr 46:113–142. https://doi.org/10.1016/S0079-6611(00)00015-X

    Article  Google Scholar 

  72. Souvermezoglou E, Krasakopoulou E, Pavlidou A (1999) Temporal variability in oxygen and nutrient concentrations in the southern Aegean Sea and the straits of the Cretan Arc. Prog Oceanogr 44:573–600. https://doi.org/10.1016/S0079-6611(99)00045-2

    Article  Google Scholar 

  73. Souvermezoglou E, Krasakopoulou E (2000) Chemical oceanography in the Cretan Sea: changes associated to the transient. Mediterr Mar Sci 1:91–103. https://doi.org/10.12681/mms.292

    Article  Google Scholar 

  74. Cullen JJ (2015) Subsurface chlorophyll maximum layers: enduring enigma or mystery solved? Annu Rev Mar Sci 7:19.1–19.33. https://doi.org/10.1146/annurev-marine-010213-135111

    Article  Google Scholar 

  75. Clark JR, Lenton TM, Williams HTP, Daines SJ (2013) Environmental selection and resource allocation determine spatial patterns in picophytoplankton cell size. Limnol Oceanogr 58:1008–1022. https://doi.org/10.4319/lo.2013.58.3.1008

    Article  Google Scholar 

  76. Tanaka T, Zohary T, Krom MD, Law CS, Pitta P, Psarra S, Rassoulzadegan F, Thingstad TF, Tselepides A, Woodward EMS, Flaten GAF, Skjoldal EF, Zodiatis G (2007) Microbial community structure and function in the Levantine Basin of the Eastern Mediterranean. Deep Sea Res Part I Oceanogr Res Pap 54:1721–1743. https://doi.org/10.1016/j.dsr.2007.06.008

    Article  Google Scholar 

  77. Psarra S, Zohary T, Krom MD, Mantoura RFC, Polychronaki T, Stambler N, Tanaka T, Tselepides A, Frede Thingstad T (2005) Phytoplankton response to a Lagrangian phosphate addition in the Levantine Sea (Eastern Mediterranean). Deep Sea Res Part II Top Stud Oceanogr 52:2944–2960. https://doi.org/10.1016/j.dsr2.2005.08.015

    Article  Google Scholar 

  78. Moutin T, Thingstad TF, Van Wambeke F, Marie D, Slawyk G, Raimbault P, Claustre H (2002) Does competition for nanomolar phosphate supply explain the predominance of the cyanobacterium Synechococcus? Limnol Oceanogr 47:1562–1567. https://doi.org/10.4319/lo.2002.47.5.1562

    Article  Google Scholar 

  79. Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, Wincker P, Iudicone D, de Vargas C, Bittner L, Zingone A, Bowler C (2016) Insights into global diatom distribution and diversity in the world’s ocean. Proc Natl Acad Sci 113:E1516–E1525. https://doi.org/10.1073/pnas.1509523113

    Article  Google Scholar 

  80. Bellacicco M, Volpe G, Colella S, Pitarch J, Santoleri R (2016) Influence of photoacclimation on the phytoplankton seasonal cycle in the Mediterranean Sea as seen by satellite. Remote Sens Environ 184:595–604. https://doi.org/10.1016/j.rse.2016.08.004

    Article  Google Scholar 

  81. Turner JT, Tester PA, Ferguson RL (1988) The marine cladoceran Penilia avirostris and the “microbial loop” of pelagic food webs. Limnol Oceanogr 33:245–255. https://doi.org/10.4319/lo.1988.33.2.0245

    Article  Google Scholar 

  82. Atienza D, Saiz E, Calbet A (2006) Feeding ecology of the marine cladoceran Penilia avirostris: natural diet, prey selectivity and daily ration. Mar Ecol Prog Ser 315:211–220. https://doi.org/10.3354/meps315211

    Article  Google Scholar 

  83. Kirk JTO (2011) Light and photosynthesis in aquatic ecosystems.3rd edn. Cambridge University Press

    Google Scholar 

  84. Oikonomou A, Livanou E, Mandalakis M, Lagaria A, Psarra S (2020) Grazing effect of flagellates on bacteria in response to phosphate addition in the oligotrophic Cretan Sea, NE Mediterranean. FEMS Microbiol Ecol 96:fiaa086. https://doi.org/10.1093/femsec/fiaa086

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contributions and efforts of all the scientists, the officers, and crews of HCMR research vessels AEGAEO, PHILIA, and IOLKOS that have advanced the understanding of the Aegean Sea ecosystem functioning and processes. EL acknowledges support from the “Biological Pump and Carbon Exchange Processes (BICEP)” project funded by the European Space Agency (ESA) and from the “Copernicus Climatological Characterisation of Ocean Sites for OC-SVC” project funded by EUMETSAT. IV acknowledges support from the national marine monitoring program for the implementation of the Marine Strategy Framework Directive (MSFD) in Greece and from the EU Horizon 2020 project “Marine-EO: Bridging Innovative Downstream Earth Observation and Copernicus enabled Services for Integrated maritime environment, surveillance and security.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Psarra .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Psarra, S. et al. (2022). Phytoplankton Dynamics in the Aegean Sea. In: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2022_903

Download citation

  • DOI: https://doi.org/10.1007/698_2022_903

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics